Theorms | TOC

Theorems 


Theorem 1: Regular expression (R.E) is closed under union operation.

Proof :

Consider a finite automata

    M1 = (Q1 ,  Σ1 , q1 , F1 , δ1)

    which accept L(M1)

    such that L(M1) = r1

where r1is regular expression accepted by M1

and

    M2 = (Q2 ,  Σ2 , q2 , F2 , δ2)

which accept L(M2)

such that L(M2) = r2

where r1is regular expression accepted by M2

we have to construct an finite automata 

    M = (Q ,  Σ , q0 , {qf} , δ)

which accept L(M)

such that L(M) = L(M1) U L(M2)

as follow

    (i) Q = {Q₁ U Q₂ U q₀ U qf}

    (ii) Σ =∑₁ U ∑₂

    (iii) q₀ = q₀

    (iv)  δ is represented as

        a. δ(q₀,ε) - [q₁ , q₂]

        b. δ(f₁,ε) = δ(f₂,ε)-[qf

        c. (q , a) = δ₁(q,a) (shift all transition of δ₁ to δ)

            when a∈ (∑₁ U ε) and

            for every q ∈ (Q₁ - [f₁])

        d. δ(q,a) = δ₂(q,a) when a∈(∑₂ U ε)

            and for every q∈ (Q₂ -[f₂])

 



Every transition of M₁ and M₂ is now are transition of M.

Any path in transition diagram of M from q0 to qf must begin by going to either q₀ or q2 on ε. If path goes to q1 it may follow any path from q0 to f₁ on M₁ and finally to qf on ε

Suppose M₁ accept a string x if path goes to q2 it may follow any path from q2 to f₂ on M₂ and finally to qf on ε

Suppose M₂ accept a string y from this automata M it follow that 

L(M) = [x+y] 

            where x ∈ L(M₁) and y ∈ L(M₂)

Therefore

            if L(M) = r    ;where r is regular expression of M

            than

            r = r₁ + r₂         

Therefore Regular Expression are closed under union,  Hence Proved       



Theorem 2: Regular language are closed under concatenation

                                        OR

                    If L1 and L2 are regular than L1L2 are also regular.

Proof : 

Consider a finite automata

    M1 = (Q1 ,  Σ1 , q1 , F1 , δ1)

    which accept L(M1)

    such that L(M1) = r1

where r1is regular expression accepted by M1 

Consider another finite automata

    M2 = (Q2 ,  Σ2 , q2 , F2 , δ2)

which accept L(M2) such that

    L(M2)=R2

where R2 is regular expression for M2

we have to construct an automata 

    M = (Q1 ,  Σ , q1 , F2 , δ)

which accept L(M)

such that 

    L(M) = L(m1) . L(M2)

as follow

    (i) Q = {Q₁ U Q₂}

    (ii) Σ =∑₁ U ∑₂

    (iii) δ is represented as 

            a. δ(f₁,ε) ={q₂}

            b. δ(q,a) =  δ1(q₀ , a)

                where a∈ (∑₁Uε) and for every

                q₁∈Q₁ -{f₁}

            c.  δ(q,a) = δ₂(q₁,a)

                where a∈(∑₂Uε) and for every q∈Q₂

If x is a string accepted by M₁ and y is a string accepted by M₂ than from the above finite automata M, it follows.

 

        L(M) = {xy | x ∈ L(M1) , y ∈ L(M2)

        Therefore  L(M) = L(M1) . L(M2)

Hence Regular Expression are closed under concatenation.

Hence Proved

 


Theorem 3: Regular expression is closed under kleen closure.

Proof:

Consider finite automata

     M1 = (Q1 ,  Σ1 , q1 , {f₁} , δ1)

which accept L(M1) such that

    L(M1) = r1

where r1 is regular expression for M1

we have to construct an automata

    M=(Q , ∑ , δ , q₀ ,{qf})

which accept L(M) such that

    L(M) = L*(M1)

as follows

    i.  Q= { Q₁ U q₀ U qf}

    ii. Σ = Σ

    iii. Transition function δ are represented as 

        a.  δ(q₀,ε) ={q₁ , qf }= δ(f₁,ε)

        b. shift all transition of  δ₁ to  δ

            δ(q,a) = δ₁(q,a)

        where a∈ (∑₁ U ε)

        and q ∈ (Q₁ -{f₁})

If M1 accept string x than from the finite automata (M) it follows that

    L(M) = {x* | x∈ ∑*}

Therefore L(M) = L*(M) and 

    if L(M) = r

where r is regular  expression for M than

    r=r₁*

Hence regular expression are closed under kleen closure.

Hence Proved 

 

 

Theorem 4: Regular expression is closed under positive closure.

Proof:

Consider finite automata

     M1 = (Q1 ,  Σ1 , q1 , {f₁} , δ1)

which accept L(M1) such that

    L(M1) = r1

where r1 is regular expression for M1

we have to construct an automata

    M=(Q , ∑ , δ , q₀ ,{qf})

which accept L(M) such that

    L(M) = L+(M1)

as follows

    i.  Q= { Q₁ U q₀ U qf}

    ii. Σ = Σ

    iii. Transition function δ are represented as

        a.  δ(q₀,ε)={q₁}

        b. Shift all transition of δ1 to δ

             δ(q ,a) = δ1(q ,a)

        where a∈ (∑₁ U ε)

        and  a∈ (Q₁ - {f₁})

If  M1 accept string x than from the finite automata (M) it follow that

    L(M) = {x+ | x Σ+}

Therefore  L(M) = L+(M1) and

    If L(M)=r

where r is regular expression for M than

    r=r1+

Hence RE are closed under positive closure 

Hence Proved


Theorem 5: Construct an finite automata which accept a string does not end with 0 and 1's 

                OR

If L is regular than L' is also regular

                OR

Regular language / Expression are closed under compliment.

Proof:

Consider finite automata

     M1 = (Q1 ,  Σ , q0 , {f₁} , δ)

which accept L

we have to construct are automata M 

    M = (Q ,  Σ , q0 , F , δ)

which accept L(M) such that

    L(M) = L'

    L' = Σ*-L

as follows

    i. Q = Q₁

    ii. ∑=∑₁

    iii. q₀=q₁

    iv. f=(Q-f₁)

since we have successfully constructed an automata M such as L(M)=L'

    where L'= Σ*-L

Hence proved.


 

Theorem 6: If L is regular LT is also regular. (T-Transpose)

                                    OR

Regular language are closed under transpose.

Proof:

Consider finite automata

     M = (Q ,  Σ , q0 , F , δ)

which accept L

we have to construct are automata M'

    M' = (Q ,  Σ' , q1 , F' , δ')

which accept LT such that

as follows

    i.  Q =Q

    ii. Σ' = Σ

    iii. q₀' {F}

    iv. F' = {q0

    v.  δ' are represented as

Consider if  δ(A,a)→B

where  A,B ∈ Q , A ∈ (ΣUε) than

    δ'(B,a)→A

Since the new automata L' accept LT therefore LT is regular.

Hence Proved


 

 

Theorem 6: If L1 and l2 are regular language than L1∩L2 is also regular.

Proof:

Consider finite automata

     M1 = (Q1 ,  Σ1 , q1 , F₁ , δ1)

which accept L1 and 

Consider another automata

    M2 = (Q2 ,  Σ , q2 , F₂ , δ2)

which accept L2

we have to construct an automata

    M = (Q ,  Σ , q0 , F , δ)

which accept L such that

    L= L1∩L2

as follow:

    i. Q=Q₁ X Q₂

    ii. q₀ =[q₁Xq₂]

    iii. F = [F₁XF₂]

    iv. Transition δ are represented as:

        δ([p,q],a) → [x,y]  

where  δ1(p,a)→x    and

        δ2(q,a)→y

where p,x Q₁ , q,y Q₂ and

        a ∈ (ΣUε)

therefore M accept L such that

        L = L1∩L2

Hence L1∩L2 or L is regular

It is regular because it  is accepted by any finite automata M. 



Theorem 7: If L is accepted by NFA then L is also accepted by DFA.

                            OR

NFA and DFA are equivalent

                            OR

For every NFA there is  an equivalent DFA.

Proof:

Consider a NDFA / NFA

     M = (Q , Σ , q0 , F , δ)

which accept L(M) and 

We have to construct an equivalent DFA

    M' = (Q' ,  Σ , q₀ , F' , δ')

Which accept L(M') such that

    L(M) = L(M')

as follow:

    i. Q=2Q

    ii. q₀' =[q₀]

    iii. F'= element of Q' which contain state of F.

    iv. δ([q₁,q₂,q₃ ----- qn] ,a)=[p₁,p₂,p₃ ------ pm]

be any transition of M than

δ' of M' are written as

    δ'([q₁,q₂,q₃ ----- q₄] ,a)= [p₁,p₂,p₃ ------ pm]

                    OR

    δ'([q₁,q₂,q₃ ----- q₄] ,a)= δ(([q₁],a) U ([q₂],a) U ----- U ([qn],a))

Hence L(M) = L(M')

 

 

Theorem 8: For every CFG there is an equivalent PDA             

Proof:

Consider a CFG

     G = (V , T , P , S)

which accept L(M) and 

We have to construct a PDA

    P = (Q ,  Σ , Γ , q₀ , Z₀ , F , δ)

which accept L(P)

such that

    L(M) = L(P)

as follows:

    i. A →a∝

        A ∈ V , a ∈ T , ∈ V*

        δ( q₁ , a , A )→(q₁ , ∝)

    ii. A →BC

        where A , B , C ∈ V

    iii. A →BC

        where A , B , C ∈ V

        δ( q₁ , ε , A )→(q₁ , BC)

    iv. (q₀ , ε , Z₀ )→( q₁ , S , Z₀)

    v. (q₁ , ε , Z₀ )→pop Z₀  accepted

        L(M) = L(P) 

Hence Proved.

 

 

Try Some other Theorems

Theorem 9: For every 2-DFA there is an equivalent NFA

 

Theorem 10: For every NFA with there is an equvalent NFA without ∈.

 

Theorem 11: CFG are not closed under intersection , transpose and compliment.

 

Theorem 12: R.E are closed under co-finite operation ⊕. In this theorem write union and intersection theorem. L₁ ⊕ L₂ mean either L₁ or L₂ or Both. 

 

Theorem 13: Language accepted by R.E is regular. In this theorem we proof  

R₁+R₂ | R₁.R₂  and 

R+ and R*


Theorem 14: Context free language are accepted by PDA or  conversion of PDA to CFG.

 

 

 

 

 

 

 

 


No comments:

Post a Comment