TOC : What is Regular Expression (RG)? | Class-11

Every Finite Automata accept a string which is represented by an expression is called Regular Expression.

EXAMPLE 1:

               an ,  n >= 0    

                (a0 , a, aa , aaa ......)         


Accepted Strings are : ( ε , a , aa , aaa, ...)

EXAMPLE 2 :


Accepted Strings are : ( a , aa , aaa , ...)

Now the General Expression will be :   an  ,  n > = 1

We can say that :

Generalised format of string which is accepted by Finite Automata is called Regular Expression (RE)

EXAMPLE:


                                             Now the Regular Expression (RE) = a
                                                             

BASIC CLOSURE PROPERTIES OF REGULAR EXPRESSION (RE)

1. Kleen closure (*):
Suppose a be any regular expression and, if we  a*  write which is equal to   
                    

 
  

 
                                                    

If the value of i=0 the value of a = ε then  ε , a , aa , aaa, ...)

Acceptable value of any RE is combine in a set is called regular set.

OR

Regular set contain set of acceptable values of any RE.

So Regular Set =  ( ε , a , aa , aaa, ...)


2. Positive closure (+):

If a be any regular expression and if we write  athis is equivalent to 


i.e   acontain at least one a 
Regular Set (RS)  = ( a , aa , aaaa , ........ )
Note :   ε is  not included

a= any number of a's possibly ε
a= any number of a's but contain at last one a.

Relation  between    a&  a


Let we proof above relation
First take RHS = ( a ) ( a)
                     = ( a , aa , aaa , ......)
                     = a
therefore  LHS  = RHS hence proved.

QUESTIONS FOR PRACTICE

1. Construct a regular set (RS) for following:

a. (01)*
Solution: RS =  ( ε , 01, 0101, 010101, ...... )

b. ( 0 + 1 )

Solution: Note here + means union (U)

                (0) U (1) → ( 0,1)

c.  01*
Solution RS = (0) ( ε, 1, 11, 111, .....) 

                     = (0, 01, 011, 0111, .....)

d.  (01)* + 0
Solution: RS = ε , 01, 0101, 010101, ...... )  U  (0)
                       = ε , 01, 0101, 010101, ...... , 0)

e. (0 + 1)*

Solution: RS = ( 0 )*  U  ( 1)*
                      = ( ε , 0, 00, 000, ...... )  U  ( ε , 1, 11, 111, ...... )     
                       = ( 0 ) U  ( ε , 1, 11, 111, ...... )    
              RS = ( ε , 1, 11, 111, ...... , 0 )    

f.  (0+1)+

Solution:  RS =  (0)+  U  (1)+

                    =  (0) U (1, 11, 111, ..... )

                    =  (1, 11, 111, ..... , 0 )

RE for string of 0's and 1's contain at least one symbol.

2. Prove that
                                ε + 11+ =1*

Proof: 
                  let we take LHS 
                               i.e    ε + 11+ 
                              = ( ε ) U (1) (  ε , 1, 11, 111, ...... )
                                 =  ε , 1, 11, 111, ...... )
                              1*
     Now LHS = RHS
     Hence proved

3. Prove that    
                                0 (10)*  = (01)* 0  are equal
Proof:
            Let we take LHS = 0 (10)*
                                     = (0) ( ε , 10, 1010, 101010, ...... )
                              LHS = ( 0, 010, 01010, 0101010, ...... )

            Now take RHS  =  (01)* 0
                                   =  ( ε , 01, 0101, 010101, ...... ) (0)
                            RHS =  ( 0 , 010, 01010, 0101010, ...... ) 
        Here   LHS =RHS
        Hence Proved.

4. Construct a regular expression which accept string of 0's and 1's ends with sub string 00.

Solution:
        
Let we understand pattern of string ask in question such as :
 100           ----  Accepted  
 1100         ----  Accepted     
 0100         ----  Accepted  
01001        ---- Not Accepted ❌

So the regular expression for such a pattern will be:
    RE = (0 + 1)* (00)

5. Construct a regular expression which accept string of 0's and 1's contain consecutive 0's.

Solution :

Let we understand pattern of string ask in question such as :
 10001         ----  Accepted  
 11000         ----  Accepted     
 01000         ----  Accepted  
010010        ---- Not Accepted ❌

So the regular expression for such a pattern will be:      
       RE = (0 + 1)* (000)  (0 + 1)*

6. Construct a regular expression which accept a string of a's and b's which contain even number of a's followed by odd number of b's.

Solution:
 Note : minimum number of a's =0
            minimum number of b's=1
Let we understand pattern of string ask in question such as :
 b                ----  Accepted  
 aab            ----  Accepted     
 aabbb        ----  Accepted  
 aaaab         ----  Accepted  
 aaaabbb     ----  Accepted  
 aabb           ---- Not Accepted ❌
 aaaabb       ---- Not Accepted  ❌

So the regular expression for such a pattern will be:      
       RE = (aa)* (b)  (bb)*
                   OR
       RE = a* (a + b)*  b+

7. Construct a regular expression which accept a string of a's and b's contain at most two a's.
                             
Solution:
 Note : minimum number of a's =0
           maximum number of a's=2
Let we understand pattern of string ask in question such as :
 b                   ----  Accepted  
 aab               ----  Accepted     
 abab             ----  Accepted  
 aabb             ----  Accepted  
 abbb             ----  Accepted  
 ababba          ---- Not Accepted ❌
 abaaba          ---- Not Accepted  ❌

So the regular expression for such a pattern will be:      
       RE = b* +  b* a  b*  +  b* a  b*  a  b*

8.  Construct a regular expression which accept a string of a's and b's start and end with same symbols.

Solution:

                         RE =  a + b + a  (a + b)*  a  +  b (a + b)b

9.  Construct a regular expression which accept binary integer divisible by 2.

Solution:

                         RE =  (0 + 1)*  0

10. Construct a regular expression which accept string of a's and b's contain one a's and two b's.

Solution:

                        RE =  abb  +  bab + bba

This post is all about regular expression i hope you all understand and it useful for you all.

No comments:

Post a Comment